Cracking the neural code is one of the longstanding questions in neuroscience. How does the activity of populations of neurons represent stimuli and perform neural computations? Decades of theoretical and experimental work have provided valuable clues about the principles of neural coding, as well as descriptive understandings of various neural codes. This raises a number of mathematical questions touching on algebra, combinatorics, probability, and geometry. This workshop will explore questions that arise from sensory perception and processing in olfactory, auditory, and visual coding, as well as properties of place field codes and grid cell codes, mechanisms for decoding population activity, and the role of noise and correlations. These questions may be tackled with techniques from information theory, mathematical coding theory, combinatorial commutative algebra, hyperplane arrangements, oriented matroids, convex geometry, statistical mechanics, and more.