Correction de l'EMD N° 2.

Exercice 1. Soit u_n la suite réelle telle que :

$$u_0 = \sqrt{2}.$$

$$u_{n+1} = \sqrt{2 + u_n} , \quad \forall n \in \mathbb{N}^*.$$

- 1. Montrer que $\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$.
- 2. Montrer qu'elle est croissante.
- 3. Déduire sa nature et calculer sa limite.

Montrons par récurrence que : $\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$.

L'hypothèse est vraie pour n = 0 car $1 \le u_0 = \sqrt{2} \le 2$.

Supposons que l'hypothèse reste vraie jusqu'à l'ordre n-1, i.e., $1 \le u_{n-1} \le 2$ et montrons qu'elle reste vraie pour l'ordre n, i.e., on montre que $1 \le u_n \le 2$.

D'après l'hypothèse de récurrence,

$$1 \le u_{n-1} \le 2$$

donc,

$$2+1 \le 2+u_{n-1} \le 2+2 \Rightarrow 1 \le \sqrt{3} \le \sqrt{2+u_{n-1}} \le \sqrt{4} = 2 \Rightarrow 1 \le u_n \le 2.$$

Ce qu'il fallait démontrer.

Montrons que u_n est croissante : (Remarquons que $u_n > 0$).

$$\frac{u_{n+1}}{u_n} = \frac{\sqrt{2+u_n}}{u_n} = \sqrt{\frac{2+u_n}{u_n^2}} = \sqrt{\frac{2}{u_n^2} + \frac{1}{u_n}}$$

Comme $1 \le u_n \le 2$ on aura $\frac{1}{u_n} \ge \frac{1}{2}$ et $\frac{1}{u_n^2} \ge \frac{1}{4}$. Donc, pour tout $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} = \sqrt{\frac{2}{u_n^2} + \frac{1}{u_n}} \ge \sqrt{\frac{2}{4} + \frac{1}{2}} = 1.$$

$$\frac{u_{n+1}}{u_n} \ge 1 \Rightarrow u_{n+1} \ge u_n \Rightarrow u_n \text{ est croissante.}$$

(On peut également le démontrer par récurrence).

 u_n est croissante et majorée donc *elle est convergente*. Calculons sa limite. On sait que :

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+1} = l.$$

Donc,

$$\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} \sqrt{u_n+2} \Rightarrow l = \sqrt{l+2}.$$

$$l^2 = l+2 \Rightarrow l^2 - l - 2 = 0.$$

$$\Delta = 9 \Rightarrow l_1 = \frac{1-3}{2} = -1 \text{ (rejet\'ee car } u_n > 0\text{) }, l_2 = \frac{1+3}{2} = 2.$$

Donc $\lim_{n\to+\infty} u_n = 2$.

Exercice 2. Soit f la fonction :

$$f(x) = x^2 + |x|.$$

Etudier la continuité et déivabilité de f.

On a pour tout $x \in \mathbb{R}$:

$$|x| = \begin{cases} -x, & \text{Si } x \le 0; \\ x, & \text{Si } x > 0. \end{cases}$$

Donc;

$$f(x) = x^2 + |x| = \begin{cases} x^2 - x, & \text{Si } x \le 0; \\ x^2 + x, & \text{Si } x > 0. \end{cases}$$

Pour $x \in]-\infty, 0[$, $f(x)=x^2-x$ donc f est continue et dérivable sur $]-\infty, 0[$ (car polynôme).

Pour $x \in]0, +\infty[$, $f(x) = x^2 + x$ donc f est continue et dérivable sur $]0, +\infty[$ (car polynôme). Continuité au point $x_0 = 0$:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x^{2} - x = 0.$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x^{2} + x = 0.$$

$$f(0) = 0.$$

Donc f est continue au point 0 et par suite sur \mathbb{R} tout entier. Dérivabilité au point $x_0 = 0$:

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} - x - 0}{x - 0} = \lim_{x \to 0^{-}} x - 1 = -1.$$

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^2 + x - 0}{x - 0} = \lim_{x \to 0^+} x + 1 = 1.$$

Donc f n'est pas dérivable au point 0.

Exercice 3. Soit f la fonction :

$$f(x) = (x^2 - 3)e^x + 1.$$

Trouver les extréma relatifs de f.

1. Points critiques de f:

$$f'(x) = 2xe^x + (x^2 - 3)e^x = (x^2 + 2x - 3)e^x.$$

Comme $e^x > 0$, $\forall x \in \mathbb{R}$, on aura :

$$f'(x) = 0 \Rightarrow x^2 + 2x - 3 = 0.$$

$$\Delta = (2)^2 - 4(1)(-3) = 4 + 12 = 16. \Rightarrow \sqrt{\Delta} = 4.$$

On obtient donc:

$$f'(x) = 0 \Rightarrow x = \frac{-2-4}{2} = -3$$
 ou $x = \frac{-2+4}{2} = 1$.

Donc, f a deux points critiques $x_1 = -3$ et $x_2 = 1$.

2. Calculons f'':

$$f''(x) = (2x+2)e^x + (x^2 + 2x - 3)e^x = (x^2 + 4x - 1)e^x.$$

2.1. Pour $x_1 = -3$ nous avons :

$$f''(x_1) = f''(-3) = ((-3)^2 + 4(-3) - 1)e^{-3} = -4e^{-3} < 0$$

Donc $f(-3)=((-3)^2-3)e^{-3}+1=6e^{-3}+1$ est un maximum relatif (local) de f. 2.2. Pour $x_2=1$ nous avons :

$$f''(x_2) = f''(1) = ((1)^2 + 4(1) - 1)e^1 = 4e > 0$$

Donc $f(1) = ((1)^2 - 3)e^1 + 1 = -2e + 1$ est un minimum relatif (local) de f.

Exercice 4. Soit la fonction :

$$sh(x) = \frac{e^x - e^{-x}}{2}.$$

- 1. Calculer le développement limité à l'ordre 3 au point 0 de la fonction sh.
- 2. Donner l'équivalent de $\frac{sh(x)}{x}$ au voisinage de 0 puis calculer :

$$\lim_{x \to 0} \frac{sh(x)}{x}.$$

En utilisant la formule de Taylor, on obtient le développement limité de e^x à l'ordre 3 au point 0 :

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3).$$

En changeant x par -x, on obtient :

$$e^{-x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3).$$

Donc,

$$sh(x) = \frac{e^x - e^{-x}}{2} = \frac{1}{2}[(1 + x + \frac{x^2}{2} + \frac{x^3}{6}) - (1 - x + \frac{x^2}{2} - \frac{x^3}{6})] + o(x^3) = x + \frac{x^3}{6} + o(x^3).$$

D'après le DL(3) en 0 de sh, on déduit que :

$$sh(x) \simeq x + \frac{x^3}{6} \Rightarrow \frac{sh(x)}{x} \simeq 1 + \frac{x^2}{6}.$$

Donc,

$$\lim_{x \to 0} \frac{sh(x)}{x} = \lim_{x \to 0} 1 + \frac{x^2}{6} = 1.$$

Exercice 5. Calculons $\int_0^1 (e^x + 3x^2) dx$:

$$\int_0^1 (e^x + 3x^2) dx = \left[e^x + x^3 \right]_0^1 = (e+1) - (1+0) = e.$$

Calculons $\int_{-2}^{2} |x^2 - 1| dx$:

$$\int_{-2}^{2} |x^{2} - 1| dx = \int_{-2}^{-1} |x^{2} - 1| dx + \int_{-1}^{1} |x^{2} - 1| dx + \int_{1}^{2} |x^{2} - 1| dx$$

$$= \int_{-2}^{-1} (x^{2} - 1) dx + \int_{-1}^{1} -(x^{2} - 1) dx + \int_{1}^{2} (x^{2} - 1) dx$$

$$= \left[\frac{1}{3} x^{3} - x \right]_{-2}^{-1} - \left[\frac{1}{3} x^{3} - x \right]_{-1}^{1} + \left[\frac{1}{3} x^{3} - x \right]_{1}^{2}$$

$$= \left[\left(\frac{-1}{3} + 1 \right) - \left(\frac{-8}{3} + 2 \right) \right] - \left[\left(\frac{1}{3} - 1 \right) - \left(\frac{-1}{3} + 1 \right) \right] + \left[\left(\frac{8}{3} - 2 \right) - \left(\frac{1}{3} - 1 \right) \right]$$

$$= \left[\frac{-1}{3} + 1 + \frac{8}{3} - 2 \right] - \left[\frac{1}{3} - 1 + \frac{1}{3} - 1 \right] + \left[\frac{8}{3} - 2 - \frac{1}{3} + 1 \right]$$

$$= \left[\frac{7}{3} - 1 \right] - \left[\frac{2}{3} - 2 \right] + \left[\frac{7}{3} - 1 \right] = \frac{7}{3} - 1 - \frac{2}{3} + 2 + \frac{7}{3} - 1 = 4$$