Workshop I: Increasing the Length, Time, and Accuracy of Materials Modeling Using Exascale Computing

Expired
Dates : 27 March 2023 » 31 March 2023

Place : Los Angeles, California
United States

Book your hotel


Organizer : Institute for Pure and Applied Mathematics (IPAM), UCLA

Topic : Physics; 0
Mathematics and Statistics; Physics; Engineering and Technology; Computer science;
Keywords: Experimental design, Data analysis, Analysis, Integration, Mathematics, Clusters, Design, Computing
Description :

The vast majority of the computing power available to the materials science community is consumed by a relatively small number of workhorse methods, such as molecular dynamics and density functional theory. These methods have been adapted to run on parallel platforms for decades, but the focus has firmly been on weak-scaling, i.e., on scaling the problem size with the number of processors. While high-performance weak-scaling implementations of these methods are extremely valuable, the focus on increasing length-scales limits opportunities for scientific discovery. Transformative impact requires the capability to leverage computing resources to simultaneously and flexibly increase length scales, time scales, and accuracy. Increasing simulation timescales requires a deep understanding of the mathematics of rare in order to inform novel methods that are specially tailored from the start, as well as strong-scaling computational engines that can leverage large computational resources on problems of relatively small sizes. This requires a dramatic rethinking of how basic algorithms in materials science are derived and implemented. Similarly, the exponential increase in computer resources now enables very high accuracy simulations with methods such as coupled clusters or quantum Monte Carlo. These methods are extremely powerful, but they tend to scale poorly with the number of electrons. The development of new flexible methods where accuracy can be systematically adjusted in order to modify the tradeoff between size and time scales would therefore be extremely beneficial. This workshop will focus on recent development of new mathematical approaches to intensive calculations at massive scale with a focus on new ways to improve scalability (both weak and strong) and extend simulations along the size, time, and accuracy axes simultaneously.

Topics: Part of the Long Program New Mathematics for the Exascale: Applications to Materials Science, Integration of direct simulations, online data analysis, and experimental data. Mathematical methods for data assimilation. Large-scale inverse problems. Computation-aided online experimental design at massive scales. Active exploration of chemical space using massive quantum calculations. Workflow infrastructure. Integration of numerically-intensive calculations with ML/data-science at scale.


Workshop I: Increasing the Length, Time, and Accuracy of Materials Modeling Using Exascale Computing to be held in Los Angeles, CA, United States between 27 March 2023 and 31 March 2023. It is organised by Institute for Pure and Applied Mathematics (IPAM), UCLA. It covers specific areas of Physics such as 0. Visit the website of the conference for more detailed information or contact the organizer for specific questions.
Add to calendar 2023-03-27 2023-03-31 Europe/London Workshop I: Increasing the Length, Time, and Accuracy of Materials Modeling Using Exascale Computing https://www.sciencedz.net/en/conference/93220-workshop-i-increasing-the-length-time-and-accuracy-of-materials-modeling-using-exascale-computing Los Angeles, CA - United States Institute for Pure and Applied Mathematics (IPAM), UCLA

Related sections :

Conferences and seminars in California
Conferences and seminars in United States
Conferences and seminars in United States in 2023
Conferences and seminars in Physics
Conferences and seminars in Physics in 2023
Conferences and seminars in Physics in United States
Conferences and seminars in Physics in United States in 2023
All events
Events by country

Disclaimer : We aim to provide correct and reliable information about upcoming events, but cannot accept responsibility for the text of announcements or for the bona fides of event organizers. Please feel free to contact us if you notice incorrect or misleading information and we will attempt to correct it.We are not involved in the organization of any of the events listed and we do not handle registration payments on behalf of the organizers.