The past decade has seen a rapid growth in the ability to collect large-scale spatiotemporal data sets about sports. Ideally, such data should be used to inform strategic and tactical decision making. On the one hand, strategy is the long-term planning of training sessions, signing of coaches and athletes, rotation and the plan made before a match/race. On the other hand, tactics are short-term and involve the execution and adaptation to the match/race plan. Having insights into the efficacy and feasibility of strategies and tactics is particularly important and challenging within sports because effective and novel strategy & tactics allow weaker teams or athletes to win against stronger ones. Unfortunately, the size, richness, and complexity of modern spatiotemporal sports data means that automated analysis is essential. Alas, the nature of the data has posed a number of challenges for classic analysis techniques. This has spurred the development of novel statistical and machine learning techniques in order to perform more fine-grained analysis of every action and decision during a competitive event. In this Dagstuhl Seminar, we aim to bring together sports researchers in academia and industry to understand how they are using machine learning and statistical techniques to analyze strategy and tactics.