Algebra adds value to mathematical biology education




As mathematics continues to become an increasingly important component in undergraduate biology programs, a more comprehensive understanding of the use of algebraic models is needed by the next generation of biologists to facilitate new advances in the life sciences, according to researchers at Sweet Briar College and the Virginia Bioinformatics Institute (VBI) at Virginia Tech.

In the paper, "Mathematical Biology Education: Beyond Calculus," which is featured in the July 31, 2009 issue of Science, VBI Professor Reinhard Laubenbacher and Sweet Briar College Mathematical Sciences Professor Raina Robeva highlight algebraic models as one of the diverse mathematical tools needed in the professional development of up-and-coming life scientists. Despite this critical need, the authors explain, algebraic models have played a less substantial role in undergraduate curricula than other methods.

Future generations of biologists will routinely use mathematical and computational approaches to develop and frame hypotheses, design experiments, and analyze results. Sound mathematical models are essential for this purpose and are currently used in the field of systems biology to understand complex biological networks. Two types of mathematical models, in particular, have been successfully used in biology to reproduce network structure and dynamics: Continuous-time models derived from differential equations (DE models) focus on the kinetics of biochemical reactions, while discrete-time algebraic models built from functions of finite-state variables focus on the logic of the connections of network variables. According to Laubenbacher and Robeva, while DE models have been included more often in undergraduate curricula integrating mathematics and biology, algebraic models should also be viewed as an important training component for students at all education levels.

Read more on Virginia Bioinformatics Institute.