Deep video understanding is a difficult task which requires systems to develop a deep analysis and understanding of the relationships between different entities in video, to use known information to reason about other, more hidden information, and to populate a knowledge graph (KG) representation with all acquired information. To work on this task, a system should take into consideration all available modalities (speech, image/video, and in some cases text). The aim of this challenge series is to push the limits of multimodal extraction, fusion, and analysis techniques to address the problem of analyzing long duration videos holistically and extracting useful knowledge to utilize it in solving different types of queries. The target knowledge includes both visual and non-visual elements. As videos and multimedia data are getting more and more popular and usable by users in different domains and contexts, the research, approaches and techniques we aim to be applied in this Grand Challenge will be very relevant in the coming years and near future.