This workshop explores problems in mathematical political science, focusing on recent developments in the study of alternative voting methods and the creation of district electoral maps. Over the last 20 years, many jurisdictions in Canada and the United States have adopted or have considered adopting alternative voting methods such as ranked-choice voting for electing mayors, representatives, city council members, etc. There are many questions about such methods which can be analyzed mathematically. For example, does ranked-choice voting tend to elect candidates who are more centrist than candidates elected by more commonly-used methods like plurality? How can we best achieve proportional representation on a legislative body? What makes an election fair? There are many open problems around such questions, and this workshop hopes to make some progress on them using mathematical tools.